Abstract
We consider biperiodic weakly singular integral equations of the second kind such as they arise in boundary integral equation methods. These are solved numerically using a collocation scheme based on trigonometric polynomials. The singularity is removed by a local change to polar coordinates. The resulting operators have smooth kernels and are discretized using the tensor product composite trapezoidal rule. We prove stability and convergence of the scheme achieving algebraic convergence of any order under appropriate regularity assumptions. The method can be applied to typical boundary value problems such as potential and scattering problems both for bounded obstacles and for periodic surfaces. We present numerical results demonstrating that the expected convergence rates can be observed in practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.