Abstract

Phase change memory (PCM) cells rely on the orders of magnitude difference in resistivity between the crystalline and amorphous phases to store information. However, the temporal evolution of the resistance of the amorphous phase, commonly referred to as resistance drift, is a key challenge for the realization of multi-level PCM. In this article, we present a comprehensive description of the time-temperature dependence of the resistance variation in a PCM cell. Our model consists of a structural relaxation model and an electrical transport model. The structural relaxation model is based on the idea that the atomic configuration of the melt-quenched amorphous phase as a whole collectively relaxes towards a more favorable equilibrium state. Experimental results obtained over a wide range of temperatures and times show remarkable agreement with the proposed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.