Abstract

In this paper, we present a novel multiple phase I/O collective technique for generic block-cyclic distributions. The I/O technique is divided into two stages: inspector and executor. During the inspector stage, the communication pattern is computed and the required datatypes are automatically generated. This information is used during the executor stage in performing the communication and file accesses. The two stages are decoupled, so that for repetitive file access patterns, the computations from the inspector stage can be performed once and reused several times by the executor. This strategy allows to amortize the inspector cost over several I/O operations. In this paper, we evaluate the performance of multiple phase I/O collective technique and we compare it with other state of the art approaches. Experimental results show that for small access granularities, our method outperforms in the large majority of cases other parallel I/O optimizations techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.