Abstract

Valinomycin and nigericin are potassium ionophores acting selectively on the mitochondrial inner membrane of Saccharomyces cerevisiae [Kovac, L., Bohmerova, E., Butko, P., 1982a. Ionophores and intact cells. I. Valinomycin and nigericin act preferentially on mitochondria and not on the plasma membrane of Saccharomyces cerevisiae. Biochim. Biophys. Acta 721, 341–348]. However, the molecular mechanism of their action is not understood. Here we show that their selective effect on mitochondrial membranes is not caused by the pleiotropic drug resistance system. To identify the molecular components mediating the action of ionophores we isolated several mutants specifically resistant to valinomycin and/or nigericin. In contrast to the parental strain, these mutants do not form respiratory-deficient cells in the presence of ionophores. Moreover, all mutants harbor extensively fragmented mitochondria and these morphological defects can be alleviated by the ionophores. Interestingly, we observed that these mitochondrial defects may be accompanied by changes in vacuolar dynamics. Our results demonstrate that the classical genetic approach can provide a starting point for the analysis of components involved in the action of ionophores on mitochondria-related processes in eukaryotic cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.