Abstract

Collagen is abundant but exposed in tumor due to the abnormal tumor blood vessels, thus is considered as a tumor-specific target. The A3 domain of von Willebrand factor (vWF A3) is a kind of collagen-binding domain (CBD) which could bind collagen specifically. Previously we reported a chemosynthetic CBD-SIRPαFc conjugate, which could block CD47 and derived tumor-targeting ability by CBD. CBD-SIRPαFc conjugate represented improved anti-tumor efficacy with increased MHC II+ M1 macrophages, but the uncertain coupling ratio remained a problem. Herein, we produced a vWF A3-SIRPαFc fusion protein through eukaryotic expression system. It was examined at both molecular and cellular levels with its collagen affinity, uninfluenced original affinity to targets and phagocytosis-promoting function compared to unmodified SIRPαFc. Living imaging showed that vWF A3-SIRPαFc fusion protein derived the improved accumulation and retention in tumor than SIRPαFc. In the MC38 allograft model, vWF A3-SIRPαFc demonstrated a superior tumor-suppressing effect, characterized by increased MHC II+ M1 macrophages and T cells (particularly CD4+ T cells). These results revealed that vWF A3-SIRPαFc fusion protein derived tumor-targeting ability, leading to improved anti-tumor immunotherapeutic efficacy compared to SIRPαFc. Altogether, vWF A3 improved the anti-tumor efficacy and immune-activating function of SIRPαFc, supporting targeting tumor collagen as a possible targeted strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call