Abstract
The Internet of Things (IoT) concept promises a world of networked and interconnected devices that provides relevant content to users. Recommender systems can find relevant content for users in IoT environments, offering a user-adapted personalized experience. Collaboration-based recommenders in IoT environments rely on user-to-object, space-time interaction patterns. This extension of that idea takes into account user location and interaction time to recommend scattered, pervasive context-embedded networked objects. The authors compare their proposed system to memory-based collaborative methods in which user similarity is based on the ratings of previously rated items. Their proof-of-concept implementation was used in a real-world scenario involving 15 students interacting with 75 objects at Carlos III University of Madrid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.