Abstract
Personalized recommendation systems fundamentally assess user preferences as a reflection of their emotional responses to items. Traditional recommendation algorithms, focusing primarily on numerical processing, often overlook emotional factors, leading to reduced accuracy and limited application scenarios. This paper introduces a collaborative filtering recommendation method that integrates features of facial information, derived from emotions extracted from such data. Upon user authorization for camera usage, the system captures facial information features. Owing to the diversity in facial information, deep learning methods classify these features, employing the classification results as emotional labels. This approach calculates the similarity between emotional and item labels, reducing the ambiguity inherent in facial information features. The fusion process of facial information takes into account the user’s emotional state prior to item interaction, which might influence the emotions generated during the interaction. Variance is utilized to measure emotional fluctuations, thereby circumventing misjudgments caused by sustained non-interactive emotions. In selecting the nearest neighboring users, the method considers not only the similarity in user ratings but also in their emotional responses. Tests conducted using the Movielens dataset reveal that the proposed method, modeling facial features, more effectively aligns recommendations with user preferences and significantly enhances the algorithm’s performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.