Abstract

With the modernization of the smart grid, Plug-in Electric Vehicles (PEVs) have attracted attention thanks to the effective energy support through the bi-directional power flow exchanging. In particular, vehicle-to-home technology has drawn a significant interest in PEVs' parked at smart home to enhance the power consumption profile. This paper proposes a collaborative energy management among PEVs, smart homes and neighbors' interaction. For that, a new supervision strategy based on PEVs power scheduling for smoothing the residential power load profile is developed. The objective of this study is to improve the power demand profile by controlling the PEV power charging/discharging amount to fill the valley of the power consumption curve or by providing power to home especially during peak periods to shave peak. The home energy management for achieving a flattened power load profile is divided into two parts: a local control according to the base demand profile of the considering home, the availability of their PEVs, their arrival and departure times and their initial state of charge (SOC) values. A global control according to the power demand of the specific home, the total power demand of neighbors and the availability of PEVs’ neighbors (arrival and departure times, initial energy of the battery). The simulation results of the power load profile of such smart homes highlights the interaction between PEVs, smart home and their neighbors in order to flatten the power demand curve to the greatest extent possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call