Abstract
Remote conferencing systems provide a shared environment where people in different locations can communicate and collaborate in real time. Currently, remote video conferencing systems present separate video images of the individual participants. To achieve a more realistic conference experience, we enhance video conferencing by integrating the remote images into a shared virtual environment. This paper proposes a collaborative client participant fusion system using a real-time foreground segmentation method. In each client system, the foreground pixels are extracted from the participant images using a feedback background modeling method. Because the segmentation results often contain noise and holes caused by adverse environmental lighting conditions and substandard camera resolution, a Markov Random Field model is applied in the morphological operations of dilation and erosion. This foreground segmentation refining process is implemented using graphics processing unit programming, to facilitate real-time image processing. Subsequently, segmented foreground pixels are transmitted to a server, which fuses the remote images of the participants into a shared virtual environment. The fused conference scene is represented by a realistic holographic projection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.