Abstract

This study reports a pre-college initiative that aims to integrate computational thinking (CT) in an integrated STEM learning environment in community centers' after-school programs for upper-level elementary school students. The initiative takes a collaborative approach that engages a range of stakeholders including higher institution's STEM educational researchers and disciplinary experts, a school district, three community centers and their satellite campus that serve Title I schools, and both in-service and pre-service teachers to develop and implement an integrated “STEM + CT” curriculum. The design and development of the integrated STEM+CT curriculum was guided by project-based learning (PBL) that engages students in sustained project-based activities and requires students to apply multiple STEM content knowledge and skills to solve a problem, in after-school programs where they enjoy large blocks of dedicated time to learn and practice CT and STEM. The implementation of the curriculum was led by in-service teachers in community centers' after-school programs who serve as facilitators and learners, and bring a depth of pedagogical knowledge, and who also benefit from such sustained interactions. This collaborative initiative brings relevant stakeholders together and helps build a researcher-practitioner partnership that aims to design, study, improve, and scale innovations in teaching and learning, which facilities the solving of a shared challenge of educational practice - how to integrate CT in K-12 STEM learning? - in this study. Lessons learned from the collaborative process are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call