Abstract
This paper introduces a collaboration-based particle swarm optimizer (PSO) by incorporating three new strategies: a global learning strategy, a probability of learning, and a “worst replacement” swarm update rule. Instead of learning from the personal historical best position and the global (or local) best position which was used by the classical PSO, a target particle learns from another randomly chosen particle and the global best one in the swarm. Instead of accepting a new velocity directly, the velocity updates according to a learning probability, according to which the velocity of the target particle in each dimension updates via learning from other particles or simply inherits its previous velocity component. Since each particle has the same chance to be selected as a leader, the worst particle might influence the whole swarm’s performance. Therefore, the worst particle in the swarm in each update is moved to a new better position generated from another particle. The proposed algorithm is shown to be statistically significantly better than six other state-of-the-art PSO variants on 20 typical benchmark functions with three different dimensionalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.