Abstract

Abstract The neutron star low-mass X-ray binary and intermittent millisecond X-ray pulsar HETE J1900.1–2455 returned to quiescence in late 2015, after a prolonged accretion outburst of ≃10 yr. Using a Chandra observation taken ≃180 d into quiescence, we detect the source at a luminosity of ≃4.5 × 1031 (D/4.7 kpc)2 erg s−1 (0.5–10 keV). The X-ray spectrum can be described by a neutron star atmosphere model with a temperature of ≃54 eV for an observer at infinity. We perform thermal evolution calculations based on the 2016 quiescent data and a ≲98 eV temperature upper limit inferred from a Swift observation taken during an unusually brief (≲2 weeks) quiescent episode in 2007. We find no evidence in the present data that the thermal properties of the crust, such as the heating rate and thermal conductivity, are different than those of non-pulsating neutron stars. Finding this neutron star so cold after its long outburst imposes interesting constraints on the heat capacity of the stellar core; these become even stronger if further cooling were to occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call