Abstract

Chlamydia trachomatis is an obligate intracellular bacterium associated with trachoma and sexually transmitted diseases. During its intracellular developmental cycle, Chlamydia resides in a membrane bound compartment called the inclusion. A subset of Type III secreted effectors, the inclusion membrane proteins (Inc), are inserted into the inclusion membrane. Inc proteins are strategically positioned to promote inclusion interaction with host factors and organelles, a process required for bacterial replication, but little is known about Inc proteins function or host interacting partners. Moreover, it is unclear whether each Inc protein has a distinct function or if a subset of Inc proteins interacts with one another to perform their function. Here, we used IncD as a model to investigate Inc/Inc interaction in the context of Inc protein expression in C. trachomatis. We developed a co-infection model system to display different tagged Inc proteins on the surface of the same inclusion. We also designed chimeric Inc proteins to delineate domains important for interaction. We showed that IncD can self-interact and that the full-length protein is required for dimerization and/or oligomerization. Altogether our approach can be generalized to any Inc protein and will help to characterize the molecular mechanisms by which Chlamydia Inc proteins interact with themselves and/or host factors, eventually leading to a better understanding of C. trachomatis interaction with the mammalian host.

Highlights

  • Chlamydia trachomatis is an obligate intracellular bacterial pathogen responsible for the most common preventable blindness from infectious origin and is the leading cause of sexually transmitted infection of bacterial origin (Schachter, 1999)

  • IncG, CTL0314 and CTL0475 were chosen based on their potential ability to interact with IncD (Gauliard et al, 2015) and IncE was included as a negative control

  • To verify the expression of the constructs, HeLa cells were infected with the above listed C. trachomatis strains in the absence or in the presence of aTc and the corresponding cell lysates were analyzed by western-blot (Figure 1A)

Read more

Summary

Introduction

Chlamydia trachomatis is an obligate intracellular bacterial pathogen responsible for the most common preventable blindness from infectious origin and is the leading cause of sexually transmitted infection of bacterial origin (Schachter, 1999). Chlamydia Inclusion Membrane Proteins Interaction nutrients (Elwell et al, 2016). Central to these processes is a bacterial Type III secretion system (T3SS), which allows for the translocation of bacterial effectors from the bacterial cytosol into the host cell (Mueller et al, 2014). One family of C. trachomatis T3SS effectors, are inserted into the inclusion membrane and referred to as the inclusion membrane proteins (Inc) (Dehoux et al, 2011; Lutter et al, 2012; Moore and Ouellette, 2014)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.