Abstract

Mode I steady-state dynamic crack growth in rate-dependent viscoplastic solids containing damage, under small scale yielding conditions, is analyzed based on a modified cohesive zone model. A multi-scale approach is used to describe the entire non-linear zone consisting of a plastic region and a damage region, each of which has its own constitutive law. Traction in the damage region is characterized by a softening power-law, in terms of the ultimate strength, a softening index and a rate sensitivity factor. In the plastic region, the cohesive law is assumed to be both strain hardening and rate dependent. The critical crack opening displacement at the physical crack-tip controls crack growth. The governing integral equations are derived and solved by a collocation method combined with associated boundary conditions. Numerical results are presented for the traction and opening profiles along the cohesive zone, the fracture energy and lengths of the damage and non-linear zones at different crack speeds and for different material parameters. The importance of factors, such as material softening, plastic deformation, crack speed and viscosity, is identified by parametric studies. In addition, the competition of plastic flow and material damage, and its effect on crack growth, are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call