Abstract

Long-time integration is an effective method for improving the signal–to–noise ratio (SNR) of an echo. However, if the target radar cross-section (RCS) fluctuates over the long integration time, the traditional coherent integration and noncoherent integration methods will produce significant performance losses, making it impossible to achieve a favorable integration performance at low SNRs. This study proposes a new hybrid integration method based on the generalized Radon–Fourier transform (GRFT) and generalized Radon transform (GRT) for targets with which echoes are partially coherent. First, a coherent integration is performed with GRFT within the optimal coherent processing segment using optimal coherent processing segmented matching. Then, the GRT is used for noncoherent integration between the coherent processing sections, and the target motion parameters are obtained through a global search. Compared with the GRFT, GRT, and moving target detection (MTD)-GRT methods, the proposed method applies to targets with arbitrary RCS fluctuations, arbitrary cross-range cells, and cross-Doppler cells, and offers the best detection performance. Finally, both simulation results and measured data processing results demonstrate the effectiveness of the algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call