Abstract
In the practical application of medical image analysis, due to the different data distributions of source domain and target domain and the lack of the labels of target domain, domain adaptation for unsupervised cross-domain classification attracts widespread attention. However, current methods take knowledge transfer model and classification model as two separate training stages, which inadequately considers and utilizes the intrinsic information interaction between modules. In this paper, we propose a coherent cooperative learning framework based on transfer learning for unsupervised cross-domain classification. The proposed framework is constructed by two classifiers trained by transfer learning, which can respectively classify images of source domain and target domain, and a Wasserstein CycleGAN for image translation and data augmentation. In the coherent process, all modules are updated in turn, and the data is transferred between different modules to realize the knowledge transfer and collaborative training. The final prediction is obtained by a voting result of two classifiers. Experimental results on three pneumonia databases demonstrate the effectiveness of our framework with diverse backbones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.