Abstract

Circular SAR (CSAR) has the ability of 3-D imaging due to its special curve trajectory. Single-pass CSAR can theoretically obtain the resolution of the sub-wavelength level on the distance-azimuth plane, but its resolution at the elevation direction is very low. At the same time, CSAR 3-D imaging with Back Projection(BP) has high algorithm complexity and low imaging efficiency. A coherent 3-D imaging method for multi-circular SAR based on an improved 3-D back projection algorithm is proposed. For the problem of high time complexity of the imaging algorithm, an improved 3-D BP algorithm for CSAR based on constructing geometric interpolation kernel is proposed. 3-D interpolation operations are transformed into 1-D interpolation operations and distance vector searching operations. The final imaging result is obtained by coherently accumulating the improved 3-D BP results of multi-circular SAR. The proposed method solves effectively the problem of low elevation resolution of single-pass CSAR, improves 3-D imaging details, and reduces greatly the time of CSAR 3-D imaging simultaneously. The simulated 3-D imaging results of the conical target and GOTCHA data set from the US Air Force Laboratory verify the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call