Abstract

In type theory a proposition is represented by a type, the type of its proofs. As a consequence, the equality relation on a certain type is represented by a binary family of types. Equality on a type may be conventional or inductive. Conventional equality means that one particular equivalence relation is singled out as the equality, while inductive equality – which we also call identity – is inductively defined as the ‘smallest reflexive relation’. It is sometimes convenient to know that the type representing a proposition is collapsed, in the sense that all its inhabitants are identical. Although uniqueness of identity proofs for an arbitrary type is not derivable inside type theory, there is a large class of types for which it may be proved. Our main result is a proof that any type with decidable identity has unique identity proofs. This result is convenient for proving that the class of types with decidable identities is closed under indexed sum. Our proof of the main result is completely formalized within a kernel fragment of Martin-Löf's type theory and mechanized using ALF. Proofs of auxiliary lemmas are explained in terms of the category theoretical properties of identity. These suggest two coherence theorems as the result of rephrasing the main result in a context of conventional equality, where the inductive equality has been replaced by, in the former, an initial category structure and, in the latter, a smallest reflexive relation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.