Abstract

The research on medical robotics is starting to address the autonomous execution of surgical tasks, without effective intervention of humans apart from supervision and task configuration. This paper addresses the complete automation of a surgical robot by combining advanced sensing, cognition and control capabilities, developed according to rigorous assessment of surgical requirements, formal specification of robotic system behavior and software design and implementation based on solid tools and frameworks. In particular, the paper focuses on the cognitive control architecture and its development process, based on formal modeling and verification methods as best practices to ensure safe and reliable behavior. Full implementation of the proposed architecture has been tested on an experimental setup including a novel robot specifically designed for surgical applications, but adaptable to different selected tasks (i.e. needle insertion, wound suturing).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.