Abstract

Abstract. A landform is any physical feature of the earth's surface having a characteristic, recognizable shape. Most landform identification methods rely on OBIA (Object-Based Image Analysis) techniques to segment the terrain data and classify segments into objects that are assumed to compose the landform. However, geomorphologists can visually recognize any landform, considering the characteristics of the surrounding environment that plays the role of context. This notion of context was not considered in previous landform identification methods. We propose to model it using the notion of landsystem. Landsystems are geomorphologic elements that result from a set of natural geomorphological processes. They are also easily recognized by geomorphologists. In this paper, we present a new knowledge-based method to automatically identify landsystems as the context for landform identification. We first present a conceptual model as a core ontology of geomorphologic elements including landsystems and landforms, capturing relevant geomorphologists’ knowledge. Then, we present how this model is extended to create a domain ontology for a chosen domain in geomorphology. We illustrate such an extension for the case of mountainous glacial valleys. We used the graph database engine Neo4J to implement the domain ontology and to develop a knowledge-based system (a framework) to automatically identify landsystems from spatial datasets. We present the architecture of our framework and discuss how it is used to support: 1) the knowledge acquisition tasks; 2) the spatial data preparation task; 3) the processing of the user’s request seeking landsystems in a chosen study area.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.