Abstract

Multi-objective optimisation (MOO) has always been a challenging problem that received considerable attention in practical engineering applications due to the multicriteria objectives. This paper presents a coevolutionary quantum krill herd algorithm (CQKH) as a novel numerical method for solving MOO. The CQKH is a quantum-inspired evolutionary algorithm which improves the krill herd algorithm (KH) based on quantum representation and quantum rotation gate. As a result, CQKH has a stronger robustness and the capability of finding the optimal or near optimal solution faster by fewer individuals. In addition, the CQKH adopts a coevolutionary technique named multiple populations for multiple objectives (MPMO) to obtain the whole Pareto optimal front. The computation results of CQKH on numerical tests with various characteristics demonstrate its effectiveness and superiority compared to some state-of-the- art algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.