Abstract
Multimodal Multi-Objective Problems (MMOPs) are frequently encountered in the real world. Traditional Multimodal Multi-Objective Evolutionary Algorithms (MMEAs) often find multiple Pareto optimal solutions with the same objective values. However, in real-world problems, there often exist multiple global optimal solutions and local optimal solutions at the same time. Ensuring that these solution sets are obtained simultaneously is the concern of most current researchers. To address this issue, this paper proposes a novel multimodal multi-objective evolutionary algorithm named CoSOMEA. In the CoSOMEA, a Self-organizing map (SOM) neural network is used to extract the information of decision space to ensure better exploration of the global optima and exploitation of the local optima. Meanwhile, coevolutionary mechanism are used to ensure a balance between the exploration and exploitation in order to avoid the algorithm falling into local areas. The three test suites named IDMP, IDMP_ee and MMF are adopted to verify the effectiveness of proposed algorithm. Experimental results demonstrate that the CoSOMEA exhibits competitive performance in solving MMOPs compared to other state-of-the-art MMEAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.