Abstract

One of the major challenges in data mining is the extraction of comprehensible knowledge from recorded data. In this paper, a coevolutionary-based classification technique, namely COevolutionary Rule Extractor (CORE), is proposed to discover classification rules in data mining. Unlike existing approaches where candidate rules and rule sets are evolved at different stages in the classification process, the proposed CORE coevolves rules and rule sets concurrently in two cooperative populations to confine the search space and to produce good rule sets that are comprehensive. The proposed coevolutionary classification technique is extensively validated upon seven datasets obtained from the University of California, Irvine (UCI) machine learning repository, which are representative artificial and real-world data from various domains. Comparison results show that the proposed CORE produces comprehensive and good classification rules for most datasets, which are competitive as compared with existing classifiers in literature. Simulation results obtained from box plots also unveil that CORE is relatively robust and invariant to random partition of datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.