Abstract

We report on the growth of Li-Ni codoped p-type ZnO thin films using pulsed laser deposition. Two mole percent Li monodoped ZnO film shows highly insulating behavior. However, a spectacular decrease in electrical resistivity, from 3.6 × 10(3) to 0.15 Ω cm, is observed by incorporating 2 mol % of Ni in the Li-doped ZnO film. Moreover, the activation energy drops to 6 meV from 78 meV with Ni incorporation in Li:ZnO lattice. The codoped [ZnO:(Li, Ni)] thin film shows p-type conduction with room temperature hole concentration of 3.2 × 10(17) cm(-3). Photo-Hall measurements show that the Li-Ni codoped p-ZnO film is highly stable even with UV illumination. XPS measurements reveal that most favorable chemical state of Ni is Ni(3+) in (Li, Ni): ZnO. We argue that these Ni(3+) ions act as reactive donors and increase the Li solubility limit. Codoping of Li, with other transitional metal ions (Mn, Co, etc.) in place of Ni could be the key to realize hole-dominated conductivity in ZnO to envisage ZnO-based homoepitaxial devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.