Abstract

Recently, Schmidhuber proposed a new concept of generalized algorithmic complexity. It allows for the description of both finite and infinite sequences. The resulting distributions are true probabilities rather than semimeasures. We clarify some points for this setting, concentrating on Enumerable Output Machines. As our main result, we prove a strong coding theorem (without logarithmic correction terms), which was left as an open problem. To this purpose, we introduce a more natural definition of generalized complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.