Abstract
M. Auslander and M. Bridger have shown that the depth of a Noetherian local ring is the sum of the Gorenstein dimension and the depth of any given nonzero finitely generated module of finite Gorenstein dimension. In this paper it is demonstrated that this result remains true when suitably interpreted for the class of coherent rings herein entitled pseudo-Noetherian rings. This class contains, among others, all Noetherian rings and valuation domains as well as non-Noetherian local rings of infinite depth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.