Abstract
Code review as an effective software quality assurance practice has been widely applied in many open-source software communities. However, finding a suitable reviewer for certain codes can be very challenging in open-source communities due to the difficulty of learning the characteristics of reviewers and the code-reviewer interaction sparsity in open-source software communities. To tackle this problem, most previous approaches focus on learning developers’ capabilities and experiences and recommending suitable developers based on their historical interactions. However, such approaches usually suffer from data-sparsity and noise problems, which may reduce the recommendation accuracy. In this paper, we propose an attentive neighbor embedding propagation enhanced code reviewer recommendation framework (termed ANEP). In ANEP, we first construct the reviewer–code interaction graph and learn the semantic representations of the reviewer and code based on the transformer model. Then, we explicitly explore the attentive high-order embedding propagation of reviewers and code and refine the representations along their neighbors. Finally, to evaluate the effectiveness of ANEP, we conduct extensive experiments on four real-world datasets. The experimental results show that ANEP outperforms other state-of-the-art approaches significantly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.