Abstract

During embryonic development, Wnt signaling influences both proliferation and sensory formation in the cochlea. How this dual nature of Wnt signaling is coordinated is unknown. In this study, we define a novel role for a Wnt-regulated gene, Mybl2, which was already known to be important for proliferation, in determining the size and patterning of the sensory epithelium in the murine cochlea. Using a quantitative spatial analysis approach and analyzing Mybl2 loss-of-function, we show that Mybl2 promoted proliferation in the inner sulcus domain but limited the size of the sensory domain by influencing their adjoining boundary position via Jag1 regulation during development. Mybl2 loss-of-function simultaneously decreased proliferation in the inner sulcus and increased the size of the sensory domain, resulting in a wider sensory epithelium with ectopic inner hair cell formation during late embryonic stages. These data suggest that progenitor cells in the inner sulcus determine boundary formation and pattern the sensory epithelium via MYBL2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.