Abstract
AbstractA host–guest complex self‐assembled through Co2+ and cucurbit[5]uril (Co@CB[5]) is used as a supramolecular catalyst on the surface of metal oxides including porous indium tin oxide (ITO) and porous BiVO4 for efficient electrochemical and photoelectrochemical water oxidation. When immobilized on ITO, Co@CB[5] exhibited a turnover frequency (TOF) of 9.9 s−1 at overpotential η=550 mV in a pH 9.2 borate buffer. Meanwhile, when Co@CB[5] complex was immobilized onto the surface of BiVO4 semiconductor, the assembled Co@CB[5]/BiVO4 photoanode exhibited a low onset potential of 0.15 V (vs. RHE) and a high photocurrent of 4.8 mA cm−2 at 1.23 V (vs. RHE) under 100 mW cm−2 (AM 1.5) light illumination. Kinetic studies confirmed that Co@CB[5] acts as a supramolecular water oxidation catalyst, and can effectively accelerate interfacial charge transfer between BiVO4 and electrolyte. Surface charge recombination of BiVO4 can be also significantly suppressed by Co@CB[5].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.