Abstract

A metal-organic framework (MOF)-modified bismuth vanadate (BiVO4 ) photoanode is fabricated by an ultrathin sheet-induced growth strategy, where ultrathin cobalt oxide sheets act as a metal source for the in situ synthesis of Co-based MOF poly[Co2 (benzimidazole)4 ] (denoted [Co2 (bim)4 ]) nanoparticles on the surface of BiVO4 . [Co2 (bim)4 ] with small particle size and high dispersion can serve as a promising cocatalyst to accept holes transferred from BiVO4 and boost surface reaction kinetics for photoelectrochemical (PEC) water oxidation. The photocurrent density of a [Co2 (bim)4 ]-modified BiVO4 photoanode can achieve 3.1 mA cm-2 under AM 1.5G illumination at 1.23 V versus the reversible hydrogen electrode (RHE), which is better than those of pristine and cobalt-based inorganic materials-modified BiVO4 photoanodes. [Co2 (bim)4 ], with porosity and abundant metal sites, exhibits a high surface charge-separation efficiency (83 % at 1.2 V versus RHE), leading to the enhanced PEC activity. This work will bring new insight into the development of MOF materials as competent cocatalysts for PEC water splitting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call