Abstract

Herein, we construct a composite material of Pt-NPs@NPCNs-Co by anchoring Pt nanoparticles (Pt NPs) and Co-salen covalent organic polymer (Co-COP) onto N, P co-doped carbon nanotubes (NPCNs), thereby offering an integrated approach to enhance H2O dissociation. The bimetallic catalyst Pt-NPs@NPCNs-Co demonstrates exceptional HER performance, and the overpotential at 40 mA cm-2 is lower than that of 20% Pt/C. When the overpotential is 50 mV, the mass activity of Pt-NPs@NPCNs-Co is 2.8 times that of the commercial Pt/C catalyst. Experimental results reveal that the synergistic interplay between Pt NPs and Co contributes to the excellent electrocatalytic performance observed. Density function theory calculations found that Co effectively modulates the electronic structure of Pt NPs and lowers the activation energy of the Volmer step, thereby accelerating the water dissociation kinetics of Pt NPs. This research contributes to the advancement of knowledge regarding the development of more efficient bimetallic co-catalytic electrocatalysts in alkaline media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.