Abstract

The complex Co(dmpe)2H catalyzes the hydrogenation of CO2 at 1 atm and 21 °C with significant improvement in turnover frequency relative to previously reported second- and third-row transition-metal complexes. New studies are presented to elucidate the catalytic mechanism as well as pathways for catalyst deactivation. The catalytic rate was optimized through the choice of the base to match the pKa of the [Co(dmpe)2(H)2]+ intermediate. With a strong enough base, the catalytic rate has a zeroth-order dependence on the base concentration and the pressure of hydrogen and a first-order dependence on the pressure of CO2. However, for CO2:H2 ratios greater than 1, the catalytically inactive species [(μ-dmpe)(Co(dmpe)2)2]2+ and [Co(dmpe)2CO]+ were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.