Abstract

Inspired by the significant advantages of the bottom-up synthesis whose structures and functionalities can be customized by the selection of molecular components, a 2D metal-organic framework (MOF) nanosheet Co-BTB-LB has been synthesized by a liquid-liquid interface-assisted method. The as-prepared Co-BTB-LB is identified by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX) and X-ray photoelectron spectroscopy (XPS), and the sheet-like structure is verified by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). Co-BTB-LB electrode exhibits an excellent capacity of 4969.3Fg-1 at 1Ag-1 and good cycling stability with 75% capacity retention after 1000 cycles. The asymmetric supercapacitor device with Co-BTB-LB as the positive electrode shows a maximum energy density of 150.2Whkg-1 at a power density of 1619.2Wkg-1 and good cycling stability with a capacitance retention of 97.1% after 10000 cycles. This represents a state-of-the-art performance reported for asymmetric supercapacitor device using electroactive bottom-up metal-complex nanosheet, which will clearly lead to a significant expansion of the applicability of this type of 2D nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call