Abstract

In order to extend the time and distance scales of molecular dynamics simulations, it is essential to create accurate coarse-grained force fields, in which each particle contains several atoms. Coarse-grained force fields that utilize the Lennard-Jones potential form for pairwise nonbonded interactions have been shown to suffer from serious inaccuracy, notably with respect to describing the behavior of water. In this paper, we describe a coarse-grained force field for water, in which each particle contains four water molecules, based on the Morse potential form. By molecular dynamics simulations, we show that our force field closely replicates important water properties. We also describe a Morse potential force field for alkanes and a simulation method for alkanes in which individual particles may have variable size, providing flexibility in constructing complex molecules comprised partly or solely of alkane groups. We find that, in addition to being more accurate, the Morse potential also provides the ability to take larger time steps than the Lennard-Jones, because the short distance repulsion potential profile is less steep. We suggest that the Morse potential form should be considered as an alternative for the Lennard-Jones form for coarse-grained molecular dynamics simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.