Abstract
In [1], [4], and [6] the authors have studied index problems associated with the ‘coarse geometry’ of a metric space, which typically might be a complete noncompact Riemannian manifold or a group equipped with a word metric. The second author has introduced a cohomology theory, coarse cohomology, which is functorial on the category of metric spaces and coarse maps, and which can be computed in many examples. Associated to such a metric space there is also a C*-algebra generated by locally compact operators with finite propagation. In this note we will show that for suitable decompositions of a metric space there are Mayer–Vietoris sequences both in coarse cohomology and in the K-theory of the C*-algebra. As an application we shall calculate the K-theory of the C*-algebra associated to a metric cone. The result is consistent with the calculation of the coarse cohomology of the cone, and with a ‘coarse’ version of the Baum–Connes conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.