Abstract

The coarse graining method to be advocated in this paper consists of two main steps. First, the propagation of an ensemble of molecular states is described as a Markov chain by a transition probability matrix in a finite state space. Second, we obtain metastable conformations by an aggregation of variables via Robust Perron Cluster Analysis (PCCA+). Up to now, it has been an open question as to how this coarse graining in space can be transformed to a coarse graining of the Markov chain while preserving the essential dynamic information. In this article, we construct a coarse matrix that is the correct propagator in the space of conformations. This coarse graining procedure carries over to rate matrices and allows to extract transition rates between molecular conformations. This approach is based on the fact that PCCA+ computes molecular conformations as linear combinations of the dominant eigenvectors of the transition matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.