Abstract

The algebra of infinite trees is, as proved by C. Elgot, completely iterative, i.e., all ideal recursive equations are uniquely solvable. This is proved here to be a general coalgebraic phenomenon: let H be an endofunctor such that for every object X a final coalgebra, TX, of H(_) + X exists. Then TX is an object-part of a monad which is completely iterative. Moreover, a similar contruction of a “completely iterative monoid” is possible in every monoidal category satisfying mild side conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.