Abstract

Multilattices are a suitable generalization of lattices which enables to accommodate the formalization of non-deterministic computation; specifically, the algebraic characterization for multilattices provides a formal framework to develop tools in several fields of computer science. On the other hand, the usefulness of coalgebra theory has been increasing in the recent years, and its importance is undeniable. In this paper, somehow mimicking the use of universal algebra, we define a new kind of coalgebras (the ND-coalgebras) that allows to formalize non-determinism, and show that several concepts, widely used in computer science are, indeed, ND-coalgebras. Within this formal context, we study a minimal set of properties which provides a coalgebraic definition of multilattices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.