Abstract

A high‐yielding and high‐rate reduction method that operates with alkenes, alkynes, azides, nitriles, and nitroarenes was developed and optimized. The method makes use of sodium borohydride reduction of CoSO4 under release of hydrogen along with the formation of Co2B as a nanoparticle material. The produced Co2B activates the various functional groups for hydride reduction. The protocol was proven to operate with an assortment of functional groups to provide good to excellent yields. Furthermore, the reduction method was successfully adapted, implemented, and developed for a continuous flow approach using the multi‐jet oscillating disk (MJOD) flow reactor platform at atmospheric pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.