Abstract

Research quantifying associations between early-life exposure to poly- and perfluoroalkyl substances (PFAS) and neonatal thyroid hormone levels is limited and reports inconsistent results. This study aimed to examine the associations of in utero PFAS exposure with neonatal thyroid-stimulating hormone (TSH), and to verify whether genetic and familial factors contribute to these associations. Within Wuhan Twin Birth Cohort study, we included 148 mother-twin pairs recruited between March 2016 and January 2018. Maternal plasma PFAS concentrations were measured at three different trimesters and averaged. Additionally, we measured cord plasma PFAS concentrations for twin newborns and retrieved their TSH levels from the medical system. Multivariable linear regression, generalized estimation equation, and linear mixed models were used to examine the covariate-adjusted associations. For maternal PFAS analyses, a 2-fold increment of average maternal perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) concentrations was linked with a 15% (95% CI: 2.5%, 28%) and 14% (95% CI: 2.4%, 28%) increase in neonatal TSH, respectively. For twin newborns discordant for PFAS exposure, a 2-fold increment of cord plasma PFOA, PFDA, perfluoroundecanoic acid (PFUdA), and perfluorohexanesulfonic acid (PFHxS) concentrations was related to a 7.1% (95% CI: 0.31%, 14%), 12% (95% CI: 4.8%, 20%), 7.5% (95% CI: 0.30%, 15%), and 8.5% (95% CI: 3.0%, 14%) increase in TSH among twins as individuals, respectively. Although these associations were mainly observed between twin pairs, certain PFAS exposure might have an independent association with increased TSH. Our present study suggests that higher maternal and cord plasma PFAS concentrations are associated with increased neonatal TSH, and genetic and familial factors contribute to these associations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.