Abstract

The understanding and analysis of protein associations in living cells is a major goal of molecular biology. Here, we describe an assay for the analysis of protein–protein interactions based on the co-localization of a fused site-specific protease with a cleavable reporter in close proximity to the interaction partner under examination. We exemplified this scheme in the temperature-sensitive Saccharomyces cerevisiae cdc25-2 mutant strain using the nuclear inclusion protease of tobacco etch virus fused to the adaptor protein growth factor receptor binding protein 2 (Grb2). The growth-defective phenotype of cdc25-2 was complemented by expression of a membrane-targeted constitutively active Ras protein, which contained a TEV protease substrate sequence allowing for release from the membrane upon proteolysis. Interaction of Grb2 with the membrane-targeted intracellular domain of the oncogene vErbB resulted in co-localization of the TEV protease with its substrate, release of Ras from the membrane and restoration of the temperature-sensitive phenotype of cdc25-2. The flexibility of the general scheme of this approach may allow for its application in many different assay scenarios and may represent a suitable alternative in cases where other approaches fail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call