Abstract
Visual tracking could be treated as a parameter estimation problem of target representation based on observations in image sequences. A richer target representations would incur better chances of successful tracking in cluttered and dynamic environments. However, the dimensionality of target's state space also increases making tracking a formidable estimation problem. In this paper, the problem of tracking and integrating multiple cues is formulated in a probabilistic framework; and represented by factorized graphical model. Structured variational analysis of such graphical model factorizes different modalities and suggests a co-inference process among these modalities. A sequential Monte Carlo algorithm is proposed to give an efficient approximation of the co-inference based on the importance sampling technique. This algorithm is implemented in real-time at around 30 Hz. Specifically, tracking both position, shape and color distribution of a target is investigated in this paper. Our extensive experiments show that the proposed algorithm performs robustly in a large variety of trucking scenarios. The approach presented in this paper has the potential to solve other sensor fusion problems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.