Abstract
We report the detection of a CO emission line from the submillimiter galaxy (SMG) GN10 in the GOODS-N field. GN10 lacks any counterpart in extremely deep optical and near-IR imaging obtained with the Hubble Space Telescope and ground-based facilities. This is a prototypical case of a source that is extremely obscured by dust, for which it is practically impossible to derive a spectroscopic redshift in the optical/near-IR. Under the hypothesis that GN10 is part of a proto-cluster structure previously identified at z~4.05 in the same field, we searched for CO[4-3] at 91.4 GHz with the IRAM Plateau de Bure Interferometer, and successfully detected a line. We find that the most likely redshift identification is z=4.0424+-0.0013, based on: 1) the very low chance that the CO line is actually serendipitous from a different redshift; 2) a radio-IR photometric redshift analysis; 3) the identical radio-IR SED, within a scaling factor, of two other SMGs at the same redshift. The faintness at optical/near-IR wavelengths requires an attenuation of A_V~5-7.5 mag. This result supports the case that a substantial population of very high-z SMGs exists that had been missed by previous spectroscopic surveys. This is the first time that a CO emission line has been detected for a galaxy that is invisible in the optical and near-IR. Our work demonstrates the power of existing and planned facilities for completing the census of star formation and stellar mass in the distant Universe by measuring redshifts of the most obscured galaxies through millimeter spectroscopy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.