Abstract

AbstractCobalt‐ and nickel‐free cathode materials are desirable for developing low‐cost sodium‐ion batteries (SIBs). Compared to the single P‐type and O‐type structures, biphasic P/O structures become a topic of interest thanks to improved performance. However, the added complexity complicates the understanding of the storage mechanism and the phase behavior is still unclear, especially over consecutive cycling. Here, the properties of biphasic P2(34%)/O3(60%) Na0.8Li0.2Fe0.2Mn0.6O2and its behavior at different states of charge/discharge are reported on. The material is composed of single phase O3 and P2/O3 biphasic particles. Sodium occupies the alkali layers, whereas lithium predominantly (95%) is located in the transition metal layer. An initial reversible capacity of 174 mAh g‐1is delivered with a retention of 82% dominated by Fe3+/Fe4+along with contributions from oxygen and partial Mn3+/4+redox. Cycling leads to complex phase transitions and ion migration. The biphasic nature is nevertheless preserved, with lithium acting as the structure stabilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.