Abstract

Hematite (α-Fe2O3) is a promising photoanode for photoelectrochemical (PEC) water splitting. However, the severe charge recombination and sluggish water oxidation kinetics extremely limit its use in photo-hydrogen conversion. Herein, a co-activation strategy is proposed, namely through phosphorus (P) doping and the loading of CoAl-layered double hydroxides (CoAl-LDHs) cocatalysts. Unexpectedly, the integrated system, CoAl-LDHs/P-Fe2O3 photoanode, exhibits an outstanding photocurrent density of 1.56 mA/cm2 at 1.23 V (vs. reversible hydrogen electrode, RHE), under AM 1.5 G, which is 2.6 times of pure α-Fe2O3. Systematic studies reveal that the remarkable PEC performance is attributed to accelerated surface OER kinetics and enhanced carrier separation efficiency. This work provides a feasible strategy to enhance the PEC performance of hematite photoanodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.