Abstract

Background and ObjectivePrenatal fetal monitoring, which can monitor the growth and health of the fetus, is very vital for pregnant women before delivery. During pregnancy, it is crucial to judge whether the fetus is abnormal, which helps obstetricians carry out early intervention to avoid fetal hypoxia and even death. At present, clinical fetal monitoring widely used fetal heart rate monitoring equipment. Fetal heart rate and uterine contraction signals obtained by fetal heart monitoring equipment are important information to evaluate fetal health status. MethodsThis paper is based on 1D-CNN (One Dimension Convolutional Neural Network) and GRU (Gate Recurrent Unit). We preprocess the obtained data and enhances them, to make the proportion of number of instances in different class in the training set is same. ResultsIn model performance evaluation, standard evaluation indicators are used, such as accuracy, sensitivity, specificity, and ROC (receiver operating characteristic). Finally, the accuracy of our model in the test set is 95.15%, the sensitivity is 96.20%, and the specificity is 94.09%. ConclusionsIn fetal heart rate monitoring, this paper proposes a 1D-CNN and bidirectional GRU hybrid models, and the fetal heart rate and uterine contraction signals given by monitoring are used as input feature to classify the fetal health status. The results show that our approach is effective in evaluating fetal health status and can assists obstetricians in clinical decision-making. And provide a baseline for the introduction of 1D-CNN and bidirectional GRU hybrid models into the evaluation of fetal health status.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call