Abstract
A convolutional neural networks (CNN) model for predicting size of buried objects from ground penetrating radar (GPR) B-Scans is proposed. As a pre-processing step, Sobel, Laplacian, Scharr, and Canny operators are used for edge detection of the hyperbolic features. The proposed CNN architecture extracts high level signatures in the initial stages of the model and learns additional low-level features when the input data passes through the neural network to finally make an estimation of the required parameter. Artificially generated GPR B-Scans are used to train the model. The proposed method demonstrates good performance in predicting buried object size. Upon comparison, Scharr operator followed by a deep CNN model showed the best performance, having the minimum mean absolute percentage error of 6.74 when tested on new, unseen data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.