Abstract

In this study, a deep learning model is proposed to predict groundwater levels. The model is able to accurately complete the prediction task even when the data utilized are insufficient. The hybrid model that we have developed, CNN-LSTM-ML, uses a combined network structure of convolutional neural networks (CNN) and long short-term memory (LSTM) network to extract the time dependence of groundwater level on meteorological factors, and uses a meta-learning algorithm framework to ensure the network’s performance under sample conditions. The study predicts groundwater levels from 66 observation wells in the middle and lower reaches of the Heihe River in arid regions and compares them with other data-driven models. Experiments show that the CNN-LSTM-ML model outperforms other models in terms of prediction accuracy in both the short term (1 month) and long term (12 months). Under the condition that the training data are reduced by 50%, the MAE of the proposed model is 33.6% lower than that of LSTM. The results of ablation experiments show that CNN-LSTM-ML is 26.5% better than the RMSE of the original CNN-LSTM structure. The model provides an effective method for groundwater level prediction and contributes to the sustainable management of water resources in arid regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.