Abstract

Infrared thermography (IRT) has become an interesting alternative for performing condition assessments of different types of induction motor (IM)-based equipment when it operates under harsh conditions. The reported results from state-of-the-art articles that have analyzed thermal images do not consider (1): the presence of more than one fault, and (2) the inevitable noise-corruption the images suffer. Bearing in mind these reasons, this paper presents a convolutional neural network (CNN)-based methodology that is specifically designed to deal with noise-corrupted images for detecting the failures that have the highest incidence rate: bearing and broken bar failures; moreover, rotor misalignment failure is also considered, as it can cause a further increase in electricity consumption. The presented results show that the proposal is effective in detecting healthy and failure states, as well as identifying the failure nature, as a 95% accuracy is achieved. These results allow considering the proposal as an interesting alternative for using IRT images obtained in hostile environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call