Abstract

Convolutional neural networks (CNNs) have been widely deployed in the fields of computer vision and pattern recognition because of their high accuracy. However, large convolution operations are computing-intensive that often requires a powerful computing platform such as Graphics Processing Unit (GPU). This makes it difficult to apply CNNs to portable devices. The state-of-the-art CNNs, such as MobileNetV2 and Xception, adopt depthwise separable convolution to replace the standard convolution for embedded platforms. That significantly reduces operations and parameters with only limited loss in accuracy. This highly structured model is very suitable for Field-Programmable Gate Array (FPGA) implementation. In this paper, a scalable high performance depthwise separable convolution optimized CNN accelerator is proposed. The accelerator can be fit into an FPGA of different sizes, provided the balancing between hardware resources and processing speed. As an example, MobileNetV2 is implemented on Arria 10 SoC FPGA, and the results show this accelerator can classify each picture from ImageNet in 3.75ms, which is about 266.6 frames per second. This achieves 20x speedup if compared to CPU.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.